Hazard Identification Presented September 27, 2012 Delhi India

Dr. George Pugh, Jr.

Toxicology Definition

The study of poisons and the adverse effects of chemical and physical agents on living organisms.

Paracelsus- The Father of Toxicology

- "All things are poison and nothing is without poison, only the dose permits something not to be poisonous."
 - Substances often considered toxic can be beneficial in small doses, and conversely an ordinarily benign substance like water can be deadly if over-consumed

Introduction to Hazard Identification

- Hazard Identification is the process of determining whether exposure to a chemical can cause an increase in the incidence of specific adverse health effects (e.g., cancer, birth defects).
- The process examines the available scientific data for a given chemical (or group of chemicals) and develops a weight of evidence to characterize the link between the negative effects and the chemical agent.

Hazard Identification, cont'd

- Collection of Data
 - Various Sources
 - Toxicological and Epidemiological Studies
- Information should answer these questions
 - Does exposure to the substance produce any adverse effects?
 - If yes, what are the circumstances of the exposure?
- Hazard ≠ Risk
 - Findings in animal studies does not mean same results will happen in humans
 - Saccharin

Factors that Influence Toxic Effects

Form and innate chemical activity	Pharmacokinetics
Dosage, especially dose-time relationship	Absorption
	Distribution
Route of Exposure	Metabolism
	Excretion
Age	
Sex	

Highlights of Our Safety Standards

- Toxicology evaluations should be based on high quality safety studies
- Fair evaluation of the entire record
- Benefits of ingredient not weighed in safety decision
- Assessments designed to support safe use of ingredients in all segments of the population (e.g. pregnant women, children, etc)
- Safe standards are the same for natural and synthetic ingredients

Endpoints of Toxicological Concern

- Acute Toxicity
- Mutagenicity
- Repeated Dose Toxicity
- Carcinogenicity
- Reproductive Toxicity
- Developmental Toxicity

Which studies tell you about the additive's:

Safety in pregnant women?

Safety for use long-term?

Safety for use short-term?

Consumer Safety is First and Foremost

• We ask ourselves several questions during the safety evaluation:

Potential Issue	Toxicology Studies
Will a consumer get sick shortly exposure to the additive?	Short-term toxicity studies
What if a consumer is pregnant/nursing?	Reproductive toxicity studies
Will any of the ingredients have a potential to cause cancer?	Cancer studies; genetic toxicity studies
Will small amounts over time lead to sickness?	Longer-term toxicity studies

Acute Toxicity

- Application of a single or short period of time (generally less than 1 day)
- Typically addresses expected outcome from accidental exposure to a chemical
- Tests rarely used for food ingredients.
- The acute toxicity of a substance is defined by its LD₅₀ / lethal dose that will kill 50% of a group of exposed animals; usually rodents
- Timing for results: One Month

Mutagenicity Testing

- Determines if an ingredient has the potential to affect DNA
- DNA damage contributes to various disorders such as cancer
- DNA damage may have an increased incidence of genetic disease in future generations
- In-vitro (human or bacterial cells) and in-vivo assays (rats or mice) used
- Examples: Ionizing radiation; food dye, butter yellow
- Timing for results: 5 months

Repeated Dose Toxicity

- Designed to assess effects of repeated exposures to a test material
- A 90-day study duration is most common; typically rats
- Test article administered via the route of intended human exposure (e.g. oral, inhalation)
- Evaluates systemic toxicity to various organs throughout the body (e.g. lungs, kidney, liver, brain etc.)
- If toxic symptoms are expressed, they are referred to as symptoms of "subchronic toxicity"
- Establishes No-Observed-Effect Level (NOEL)
- Timing: 9 months

Developmental Toxicity

- Evaluates adverse effects of a chemical on growth and development
- Evaluations typically performed in rabbits or rats
- Test material usually given during critical periods of organogenesis (days 6-15 rats; days 6-18 rabbits)
- Example: Vitamin A
- Timing for results: 9 months

Reproductive Toxicity

- Evaluates the adverse effects of chemicals on male and female fertility
- Typically conducted in rats
- Test material administered prior to mating, during mating, gestation and lactation
- Assessments made on the number of pregnancies, litter size, and number of stillbirths
- Timing for results: 14 months

Infertility?

The McCoughey Septuplets

Carcinogenicity

- Looks for effects that take time to develop (e.g. cancer)
- Typically conducted in rats or mice
- Test article administered via the route of intended human exposure
- Involves continuous feeding of the test substance to rodents for 20-24 months.
- Number and type of tumors determined
- Timing for results: 3 years

Organ Specific Toxic Effects

- Blood/Cardiovascular Toxicity (effects on blood cells, bone marrow or heart)
- Immunotoxicity (e.g. leukemia, allergy, immune deficiency)
- Kidney toxicity (high blood flow; can concentrate toxicants)
- Liver Toxicity (high blood flow; site of metabolism)
- Neurotoxicity (damage to brain and spinal cord)

Bridging the Results

- Was any evidence of toxicity observed?
- If yes, what do we know about the doses that produced the toxic effects?
 - Dose-Response Assessment is the process of quantitatively evaluating the toxicity of a chemical agent as a function of the dose administered.
 - The relationship between the dose of the chemical administered and the incidence of adverse health effects forms the basis for the quantitative dose-response relationship.
 - From these relationships, toxicity values (e.g., acceptable daily intake values) are derived that can be used to estimate the potential for adverse effects in an exposed population
- Remember, a finding of toxicity does not automatically mean the same will occur in humans
- The manner in which we characterize the hazard will be discussed in the next module 18